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The k - e turbulence model and a version of a second-moment closure, modified to include 
the effect of pressure reflections from a solid surface, have been used as the basis of 
predictions of the flow that results from the orthogonal impingement of circular and 
two-dimensional (2-D) jets on a flat surface. Comparison of model predictions has been 
made with velocity measurements obtained in the stagnation and wall jet regions of the 
impinging flows. Results, in general, confirm the superiority of the Reynolds stress trans- 
port equation model for predicting mean and fluctuating velocities within the latter regions 
of such flows. In particular, modifications to the second-moment closure to account for the 
influence of the surface in distorting the fluctuating pressure field away from the wall 
successfully predict the damping of normal-to-wall velocity fluctuations throughout the 
impinging flows. In contrast, results derived from the eddy-viscosity-based approach do 
not, in general, accurately reproduce experimental observations. © 1996 by Elsevier 
Science Inc. 
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Introduction 

Despite the promise offered by such techniques as direct numeri- 
cal and large eddy simulations for providing generalised predic- 
tive procedures for calculating the turbulent transport of mass, 
momentum, and heat, their computationally intensive nature 
currently precludes their use for performing routine engineering 
calculations. For the foreseeable future, conventional statistical 
approaches, based on the solution of averaged equations which 
describe the evolution of mean flow quantities, will continue to 
be used for the calculation of turbulent transport in the majority 
of practical flow configurations. 

In statistical approaches, the instantaneous flow variables are 
decomposed into mean and fluctuating quantities, and the result- 
ing equations are averaged in order to convert them into equa- 
tions for mean flow quantities. As a consequence of the nonlin- 
earity of the equations, however, the averaging process results in 
a loss of information so that the final equation set is not closed. 
Closure assumptions for all the second-order moments, including 
the Reynolds stress and turbulent flux of scalar quantities, must, 
then, be made before solution is possible. The problem of calcu- 
lating these moments can be approached at varying levels of 
complexity, but whilst relatively simple approaches such as those 
based on the use of a turbulent eddy-viscosity have gained much 
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popularity it appears (Launder 1989; Jones 1990) that second- 
moment, single-point closures represent the simplest level at 
which most of the essential features of turbulent flow can be 
directly described. Such methods, therefore, offer the most likely 
route forward for providing the widely applicable and gcneralised 
predictive procedures required in industrial applications. 

In second-moment closures, all the second-order moments 
are obtained from the solution of modelled partial differential 
balance, or transport, equations. Many authors have formulated 
second-moment, single-point closures to the Reynolds stress 
equation including, for example, Launder et al. (1975), Lumley 
(1978), and Jones and Musonge (1988). In common with all levels 
of turbulence model, however, second-moment closures have 
invariably been developed by reference to turbulent shear flows 
that are parallel to solid surfaces, and often they are only strictly 
applicable at distances from a bounding surface that are suffi- 
ciently remote for the surface to have a negligible influence on 
the fluctuating pressure field in the main body of the flow. To 
improve the generality of turbulence closures there is, therefore, 
an obvious requirement for models that arc applicable irrespec- 
tive of the flow's distance from, or orientation to, any bounding 
surfaces. 

Recently, Launder and co-workers (Cooper et al. 1993; Craft 
et al. 1993; Launder and Leschziner 1993) addressed this defi- 
ciency through the inclusion in a second-moment closure of 
additional terms which accounted for the influence of a solid 
boundary on fluctuating pressures close to the wall and, in 
particular, modelled the effect of pressure reflections from the 
surface in dampening velocity fluctuations normal to the wall. 
The modified closure was then validated against detailed velocity 
field data obtained from experiments in which turbulent, circular 
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a i r  jets impinged orthogonally onto a large plane surface, with 
model predictions being in good agreement with observations. 
The turbulent impinging jet used as the basis of these studies 
represents a demanding test case for any turbulence model and, 
more specifically, provides a flow which differs in many impor- 
tant respects from the parallel-to-wall flows more normally used 
for model development and validation purposes. In particular, 
and in contrast to flows parallel to surfaces, impinging jets 
contain regions (close to the axis of symmetry) where turbulence 
energy is created by normal straining (rather than by shear), and 
have fluctuating velocities normal to the wall larger than those 
parallel to it. 

The present authors (Dianat et al. 1996) have also extended 
the second-order, single-point closure model originally proposed 
by Jones and Musonge (1988) to cover flows that are close to 
solid surfaces. The influence of such surfaces was modelled 
through the incorporation of an additional contribution, or wall 
reflection term, in the modelled form of the redistributive fluctu- 
ating pressure term used in the Reynolds stress transport equa- 
tion. In keeping with the original closure approximation of Jones 
and Musonge, this reflection term is associated with the mean 
rate of strain and is linear in the Reynolds stress. Predictions of 
the extended model were compared with data obtained in a 
two-dimensional (2-D), flat boundary layer flow (Klebanoff 1954) 
and an impinging jet (Cooper et al. 1993) with good agreement 
being found. 

Prior to using any model of turbulent transport in performing 
routine engineering calculations, it is necessary to assess its 
accuracy and generality through application to a number of 
flows. The work described in the present paper does this and 
extends the earlier study noted above by comparing predictions 
of the modified closure formulation of Jones and Musonge 
(1988) with a wide range of impinging jet data and with results 
obtained from the more frequently used k-e turbulence model. 
This flow configuration was chosen not only because of its value 
as a test case for turbulence models, as noted above, but also due 
to its importance in many industrial applications such as cooling, 
heating, and drying, as well as in assessments of the conse- 
quences of gas releases on both onshore and offshore installa- 
tions. Predictions of these models are compared with data ob- 
tained in a number of different laboratories and, in particular, 
with measurements on impinging axisymmetric jets obtained by 
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Poreh et al. (1967), Donaldson et al. (1971), Cooper et al. (1993) 
and Birch et al. (1996) and with data on a 2-D channel flow 
gathered by Yoshida et al. (1990). Taken together with earlier 
studies (Jones and Musonge 1988; Dianat et al. 1996) the results 
presented demonstrate that the extended second-moment clo- 
sure is capable of predicting reliably a wide range of parallel- and 
normal-to-wall flows and confirm its superiority over the eddy- 
viscosity-based approach. 

M a t h e m a t i c a l  m o d e l  

Governing equations 

Predictions were based on solutions of the Reynolds-averaged 
Navier-Stokes equations closed using either the standard k-e or 
a Reynolds stress transport equation turbulence model. For 
solution, the equations were written in a form appropriate to 
axisymmetric or 2-D planar flows but, for reasons of brevity, are 
given below in general Cartesian tensor form. 

For an incompressible Newtonian fluid, the conventional 
time-averaged forms of the partial differential equations which 
describe the conservation of mass and transport of mean mo- 
mentum may be written as 

- -  = o ( 1 )  
Ox i 

and 

d t  p OX i (~Xj OXj OX i ] 

with 

d 0 0 

dt Ot 
(3) 

This set of equations is only closed when the Reynolds stress UiU j 

is approximated through the use of a turbulence model. 
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In the standard k-e turbulence model (Jones and Launder 
1972) the Reynolds stress is assumed to be related linearly to the 
mean rate of strain via a scalar eddy-viscosity: 

2 [ O~ Og t 

] (4) 

where k = u--~//2 and v t = Cl~(k2/e). Values for k and e are 
obtained from solution of modelled transport equations: 

-- UiU j -  _ ~. 
dt Ox,i ~ ffk Ox,i ] OX,I 

(5) 

and 

ds o [ v , o ~  8 o~ s 2 

t )  _ _ _ _  _ C ~ a - u i u , i - -  dt  Oxjj tr~ Oxjj k Oxj - C*2"-'ff 
(6) 

where the model constants were assigned standard values (Jones 
and Whitelaw 1982) of C, = 0.09, C~1 = 1.44, C,2 = 1.92, trk = 1.0 
and ~ = 1.3. 

In second-moment turbulence closures, the Reynolds stress is 
obtained directly from solutions of modelled partial differential 
transport equations. The modelled Reynolds stress transport 
equation used in the present work may be written as (Jones and 
Musonge 1988) 

d OU.I OU i 
-'~ (UiU'--'--~j) q- UiU'--~I-'~X l + U,IU ' OX~ l 

O [ k  O ~ 2 
= c~ox, ~/- "---~m - -  ( u - - ~ ' ) / ~  OXm ! +A''i +AT.i - 5%~ (7) 

with the redistributive fluctuating pressure term being given by 

hi . i= - e l -  ~ ~iu~ - -~)i,i k + C2~i1"UlUm OUI 
Ox m 

- - ~ C 2 + C 3 1 1 u t u , i - -  + ~ t u i - - I  j ~ ox, ox,i ] 
(8) 

Here, Zi ,  i is modelled as a general linear function of the Reynolds 
stress tensor, and it is assumed that both the "return" and the 
mean strain (or "rapid") contribution to the velocity-pressure 
gradient correlation, normally modelled separately, are directly 
influenced by mean strain. The model constants were taken as 
Cs=0.18 , C1=3.00 , C2=-0 .44 ,  C3=0.46 , and C4 = -0.23 
(Jones 1994). 

Wall reflection effects were incorporated in the second-order 
closure of Jones and Musonge (1988) through the A~ term in 
Equation 7. This term represents a correction to the standard 
redistributive fluctuating pressure term which is included to 
allow for the influence of pressure reflections from the surface in 
distorting the fluctuating pressure field away from the wall. Early 
attempts at modelling this process were made by Shir (1973), who 
proposed an approximation involving the normal distance from 
the wall and depending only on turbulence quantities, and by 
Gibson and Launder (1978), who derived a more general form, 
which included both turbulence only and mean strain contribu- 

tions. The latter model is, however, known to give spurious 
results when the mean flow is directed towards a surface, be- 
cause in such situations, the mean strain contribution erro- 
neously leads to an augmentation of the velocity fluctuations 
normal to the wall. This problem was remedied by Craft (1991) 
who considered a number of terms involving products of the 
mean velocity gradient and the Reynolds stress tensor and con- 
structed a form which produced the desired effects in both 
parallel- and normal-to-wall flows. In the present work, hiWj was 
taken as (Dianat et al. 1996) 

o~ 
A~j = -CwlUlU m ~ n t n k ( n p n p ~ i ,  i - 3n in , i ) f x (L /nqX q) 

Ox m 

o ~  
-- C w 2 U l U m - - n l n k ( n p n p S i j  -- 3n in , i ) fx (L /nqXq)  

Ox k 
(9) 

This expression is linear in the Reynolds stress, and hence, 
consistent with the uniqueness arguments invoked by Jones and 
Musonge (1988) in constructing the linear form of Aij. Its basic 
form is redistributive and involves terms associated with the 
mean rate of strain, which, according to recent findings (Brasseur 
and Lee 1987), are of greater significance than terms involving 
fluctuating velocities alone. The latter work also demonstrated 
that the "return" part of the pressure-rate of strain term is 
associated with much finer scale motions than the "rapid" com- 
ponent, and, hence, that the "rapid" component might be ex- 
pected to be more affected by the presence of any rigid bound- 
ary. In Equation 9, ni is the unit vector normal to the wall and L 
is a length scale characterising the energy containing motions. 
For the impinging flows considered, the function fx reduces the 
effect of the wall correction with increasing distance from a 
surface and was specified, in line with earlier work (Dianat et al. 
1991), as fx = k3/2/(CwniXie) ,  where C w = K / C  3/4 and C~ was 
assigned a value of 0.07 for consistency with equilibrium near 
wall flows. The constants Cwl and Cw2 were taken as 0.50 and 
0.18 (Dianat et al. 1996), these values having been chosen in 
accordance with data obtained, respectively, in one of the nor- 
mal-to-wall impinging flows (Cooper et al. 1993) considered 
further below and in a 2-D, flat boundary-layer flow (Klebanoff 
1954). Lastly, the turbulence energy dissipation rate required for 
solution of Equation 7 was obtained from 

de a [ k 0e ~ e OU t e 2 
(10) 

with C~ = 0.15, C~1 = 1.44 and C82 = 1.90 (Dianat et al. 1996). 
Here, C~ has been revised from its normal value in order to 
maintain consistency with equilibrium wall flows. This also neces- 
sitated a change in the value of C s, used in Equation 7, to 0.18 in 
order to maintain the ratio C s / C  ~ at its original quoted value. 

Computational procedure and boundary conditions 

The computational results presented below required solution of 
the full axisymmetric or 2-D planar forms of the appropriate 
transport equations. The equations were solved using a modified 
version of a computer program described elsewhere (Fairweather 
et al. 1988). The numerical solution method embodied in this 
program used either cylindrical polar or Cartesian grids and 
employed a staggered velocity storage arrangement in order to 
prevent uncoupling between the velocity and pressure fields. A 
linearised, implicit, conservative difference scheme was used, 
with convection terms being approximated by the second-order 
accurate, and bounded, TVD scheme originally proposed by Van 
Leer (1974). Central differencing was used for all other terms, 
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and the resulting quasi-linear algebraic equations were solved 
using a line Gauss-Seidel method, with solution of the velocity 
and pressure fields being achieved by a pressure correction 
method. 

The experimental arrangement employed in obtaining the 
data used below for comparison purposes was represented for 
the computations by a jet issuing vertically downwards from 
either a circular cross-sectioned pipe or a slot, with the jet 
impacting orthogonally on a horizontal fiat surface. The bound- 
ary conditions applied in the computations assumed symmetry 
along the jet centreline. At the solid surface, no-slip conditions 
were assumed, with finite-volume solutions being patched onto 
fully turbulent, local equilibrium wall law profiles with the 
matching point chosen to be at a fixed distance from the wall for 
all finite-volume grids used. A full description of the standard 
method employed, including details of its computer implementa- 
tion, can be found in Jones (1994). The upper surface of the 
computational domain was represented either as a wall (for the 
2-D flow) or as an entraining constant pressure surface (for the 
axisymmetric cases), in line with the experimental configurations 
used, while the remaining boundary was treated for both cases as 
a constant pressure surface. In performing the calculations, the 
sensitivity of computed solutions to the positioning of the con- 
stant pressure boundaries was investigated, and in the results 
presented below, these surfaces were located at positions which 
had a negligible influence on the flow. Initial conditions for the 
jet were obtained from a separate computation of developing 
flow in a pipe or slot which used a parabolic marching procedure 
(Spalding 1977) that was continued downstream until fully devel- 
oped conditions were reached. This computation was based on 
the same equation sets described above and used as the basis of 
the elliptic flow calculations. In deriving initial conditions for the 
jet studied by Poreh et al. (1967), an effective area was employed 
for the jet source, as recommended by the latter authors. 

Numerical solutions were obtained using expanding finite- 
volume meshes of up to 102 × 93 nodes in the horizontal and 
vertical directions respectively, with the mesh expansion ratio 
being less than 1.05 in the regions of interest. Results obtained 
with these grids, and with meshes containing approximately half 
this number of nodes, demonstrated that the computations were 
essentially free of numerical error (see, for example, Dianat et al. 
1991 and 1996). Results reported in the remainder of the paper 
were obtained using the more refined meshes. 

Results and discussion 

Launder and co-workers (Cooper et al. 1993; Craft et al. 1993; 
Launder and Leschziner 1993) report measurements of the rms 
of velocity fluctuations normal to a surface along the stagnation 
line of a number of impinging axisymmetric air jets. Figure 1 
compares measurements for a pipe-to-plate separation of 2d (for 
d = 101.6 mm), for two jet source Reynolds numbers (U b = 3.39 
and 10.33 ms-l),  and predictions obtained from the second-mo- 
ment closure and the k - e turbulence model. In this and subse- 
quent figures, a prime (') is used to denote rms values. In 
agreement with earlier findings (Craft et al. 1993; Dianat et at. 
1996), the standard, two-equation k - e model is seen to produce 
excessive levels of turbulence energy, leading to values of the rms 
u velocity up to four times as large as those observed in the 
experiments. This is due to the use of a linear eddy- 
viscosity-based stress-strain relationship, which leads to the 
generation of large turbulence energies in the irrotational region 
close to the stagnation point of the flow. In contrast, predictions 
of the modified second-moment closure are in excellent agree- 
ment with both datasets. In considering these results, it should 
be noted that the constant C~, 1 used in Equation 9 was assigned 
a value of 0.50 (Dianat et al. 1996) in order to bring predictions 
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of the model in line with the data given in Figure lb. Despite 
this, however, predictions are in accord with observations for 
both of the flows considered, primarily due to the strong damp- 
ing effect on the normal-to-wall fluctuating velocities caused by 
the subtraction of terms (arising from Equation 9) proportional 
to u'u'u~OU/Ox) from the main redistributive fluctuating pressure 
term (Equation 8). 

Figure 2 compares similar results obtained with axisymmetric 
jets and increasingly larger pipe-to-plate separations. Figure 2a 
again gives data obtained by Cooper et al. (1993) for the Re = 
70,000 jet, but now for a pipe-to-plate separation of 6d. Figures 
2b and c show, respectively, data obtained by Donaldson et al. 
(1971) for an impinging air jet with d = 12.98 mm, h/d = 10.0, 
and U b = 60.96 ms -1, and data from Birch et al. (1996), who 
studied an impinging methane jet with d = 10.80 ram, h/d = 12.8, 
and U b = 119.50 ms -1. For the latter jet model, results were 
derived using density-weighted (Favre) averaged forms of the 
fluid flow equations described earlier. In general, the compar- 
isons of this figure confirm the superiority of results derived from 
the second-moment closure, with the k - e model again produc- 
ing excessive levels of turbulence energy close to the surface. 
Differences do exist between the predictions and data given in 
Figure 2. In particular, some underprediction of rms u velocities 
by the second-moment closure is apparent in Figure 2a at dis- 
tances away from the wall. Because the initial conditions for the 
jet studied by Cooper et al. (1993) are well defined, this is most 
likely attributable to inaccuracies in the model itself caused by 
an overprediction of the spreading rate of the free round jet. A 
similar underprediction of data away from the wall is apparent, 
at x/d = 3, in the results of Figure 2b, although in this case 
uncertainties in the initial conditions used in the experiments 
and a lack of measurements in the free jet region of the imping- 
ing flow, make it difficult to establish the precise reasons for 
these inaccuracies. An overprediction of the spreading rate of 
the free jet may, again, be a contributing factor. Lastly, the 
results of Figure 2c indicate good agreement between theory and 
experiment away from the impinged surface, although the second- 
moment closure apparently underpredicts the datapoint in clos- 
est proximity to the wall. The latter datapoint must, however, be 
treated with some caution (Birch et al. 1996). 

Overall, the comparisons given in Figures 1 and 2 demon- 
strate that, in the irrotational normal straining zone close to the 
stagnation point, the modified second-moment closure does cap- 
ture the influence of pressure reflections from the surface in 
impeding the transfer of energy to the normal-to-wall fluctuating 
velocity component. This is also the case for increasing levels of 
near-wall turbulent velocity that occur with increasing pipe-to- 
plate separations. Away from the stagnation zone and close to 

0.40 ' 

0.30 

-~ 0.20 

0.i0 

\ a) 
\ 

k 

i 

s # ~ s  

0.i 0.2 0.3 

u'/u b 

0.40 

0.30 

0.20 

0.i0 

',. b) 

! 

. B ~  B 

0.i 0.2 0.3 

u'/U b 

Figure 1 Profiles of rms f luctuating velocity normal to the 
surface on the stagnation line of the h id=2  cases studied by 
Cooper et al. (1993) for a) Re---- 23,000 and b) Re= 70,000; (o 
measured, - -  predicted second-moment closure, --- pre- 
dicted k-~ model) 

Int. J. Heat and Fluid Flow, Vol. 17, No. 6, December 1996 533 



Impinging turbulent jets: M. Dianat et aL 

0.40 

0.30 

~ 0 . 2 0  

0.10 

3 .0  e, 
e,, :,,, a) 
:, - 

g 1.0 [ ' 
o,,o # 

0.2 0 .4  

u'/u b 

4.0 

3.0 

2.0 

1.0 

0.1 0.2 0.3  
u'/% 

"1 c) i '  
:e 

I 

0.1 0.2 
u' /U b 

Figure 2 Profiles of rms fluctuating velocity normal to the surface on the stagnation line of the jets studied by a) Cooper et al. 
(1993), b) Donaldson et al. (1971) and c) Birch et al. (1996); (key as Figure 1) 

the edge of the impinging jet, the flow is strongly rotational with 
large, boundary-induced streamline curvature. Eventually, the 
flow does revert to a thin shear flow parallel to the surface, or 
wall jet region, although the flow in this region is by no means 
simple. In particular, the maximum shear stress occurs outside 
the near-wall region, with pressure reflections from the surface 
still impeding the transfer of energy from the streamwise direc- 
tion to that normal to the surface. 

The development of the flow as it moves away from the 
stagnation point, and shear replaces normal straining as the 
principal agency for the generation of turbulence energy, is 
considered in Figures 3-6 for the Re = 23,000, h/d = 2 case 
studied by Cooper et al. (1993). Mean total velocities are given in 
Figure 3. Along the stagnation line, the mean velocity is domi- 
nated by pressure and is not affected significantly by Reynolds 

stresses. This effect persists up to radial distances approximately 
equal to the pipe radius, so that predictions derived from both 
turbulence closures are similar in this region of the flow. Beyond 
r/d= 0.5, however, significant differences start to appear be- 
tween predictions obtained from the two models, with results 
derived from the second-moment closure being in excellent qual- 
itative and quantitative agreement with experimental observa- 
tions, particularly in terms of the location and magnitude of the 
maximum velocity. In contrast, the k - e model tends to under- 
predict the magnitude of the peak velocity and overestimates the 
spreading rate in the similarity region of the radial well jet. This 
effect is attributable to excessive turbulence energy production 
and mixing close to the stagnation point, which ultimately affects 
the flow in the radial wall jet, as exemplified by the overpredic- 
tion of turbulent shear stress within the stagnation region, as 
shown in Figure 4. In the latter figure, the assumption of an 
effective turbulent viscosity is seen to lead to reasonable predic- 
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tions of the position of zero shear stress although, overall, results 
derived from the second-moment closure as in much closer 
agreement with data throughout the wall jet region. 

Fluctuating velocities normal and parallel to the surface are 
considered, respectively, in Figures 5 and 6. In line with the 
results of Figure la, predictions of the k - e model continue to 
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overestimate maximum normal-to-wall fluctuating velocities 
within the stagnation region, although this trend also continues 
(particularly at large x/d values) with increasing radial distance 
despite the fact that the inadequacies of the latter model should 
become less important as shear replaces normal straining as the 
main agency for turbulence energy generation. This discrepancy 
can be attributed to the failure of all turbulence models based on 
the Boussinesq stress-strain relation to account adequately for 
the sensitivity of the wall jet to streamline curvature effects 
induced by the lateral divergence of the flow, particularly in view 
of the underestimation of mean velocity gradients (Figure 3) by 
the k - e  model. In contrast, the modified second-moment clo- 
sure is in good agreement with data on normal-to-wall velocity 
fluctuations throughout the wall jet region, despite the decreas- 
ing influence of pressure reflection effects with increasing radial 
distance. Lastly, Figure 6 also indicates the superiority of the 
modified second-moment closure for predicting the radial fluctu- 
ating velocity component. Results in the near field of the wall jet 
do fail to capture the near-wall maxima in this velocity compo- 
nent, although this discrepancy is caused by the use of equilib- 
rium near-wall profiles to describe flow within the low Reynolds 
number, viscous subtayer region close to the surface, rather than 
by the second-moment closure itself. 

Predictions made for the Re = 70,000 jet at h/d = 2 and 6 
also studied by Cooper et al. (1993), considered further in Dianat 
et al. (1966), and for the Re = 23,000, h/d = 6 case showed 
virtually no influence of Reynolds number or pipe-to-plate sepa- 
ration on the level of agreement achieved with experimental 
data. 

Preh et al. (1967) also studied the impingement of an axisym- 
metric air jet on a plane surface, with d = 50.8 ram, h/d = 12, 
and U b = 103.63 ms -1. The data obtained by these authors allow 
an assessment of the applicability of the turbulence modelling 
approaches described earlier at greater radial distances within 
the wall jet region (r/d = 9 to 24) than is possible using the data 
of Cooper et al. (1993), and for a larger pipe-to-plate separation. 
In the near field of the jet, close to the stagnation point, 
predictions of the two turbulence models confirmed the conclu- 
sions reached earlier. Stagnation line rms u velocities deter- 
mined from the k - e  model were, therefore, approximately 
double those obtained from the modified second-moment clo- 
sure, while at small distances away from the stagnation point, 
mean and rms u velocities were qualitatively similar to those of 
Figure 3 and 5, with predictions of the latter model underesti- 
mating peak mean velocities and overestimating the spreading 
rate and rms u velocities obtained from the second-moment 
closure. Results in the far field region of the radial wall jet, 
where experimental data arc available, are given in Figures 7-10. 
Overall, the comparisons shown in the latter figures confirm the 
superiority of results derived from the modified second-moment 
closure, with predictions of shear stress (Figure 8), and both 
normal-to-wall (Figure 9) and parallel-to-wall (Figure 10) fluctu- 
ating velocities, being in closest accord with the experimental 
data. Mean velocities obtained from the latter closure also ex- 
hibit good agreement with the data (Figure 7), although for this 
particular impinging release, the spreading rate of the wall jet 
appears to be slightly underpredicted. The k - e model is again 
seen to overpredict normal-to-wall fluctuating velocities (Figure 
9), although in contrast to earlier findings, the magnitude of the 
maximum mean velocity (Figure 7) is slightly overpredicted, with 
the location of the peak being unrealistically close to the surface, 
while shear stresses (Figure 8) are in reasonable agreement with 
observations. The improved agreement obtained between predic- 
tions of the k - e model and the experimental data of Poreh et 
al. (1967), when compared to comparisons with the data of 
Cooper et al. (1993), may be attributed to the greater distance of 
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Figure 7 Profiles of mean velocity within the wall jet region 
of the jet studied by Poreh et al. (1967) and a) r id=9, b) 
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Figure 9 Profiles of rms fluctuating velocity normal to the 
surface within the wall jet region of the jet studied by Porch 
et al. (1967) at a) r id=9, b) r/d=12, c) rid--18 and d) 
r id=24; (key as Figure 1) 

the former data from the stagnation region of the impacting jet 
where the inadequacies of the k - e model are reduced. 

Lastly, Yoshida et al. (1990) studied the orthogonal impinge- 
ment of a 2-D channel flow of air on a plane surface. The limited 
comparisons possible for this case, with d = 10 mm, h / d =  8, and 
U b ---12.24 ms -1, are given in Figures 11 and 12. The former 
figure compares mean velocities close to the stagnation region 

and in the near field of the wall jet. Unlike earlier results for 
impinging axisymmetric jets, predictions of the second-moment 
closure for this planar flow appear to overpredict peak velocities 
close to the surface, particularly in the near field, despite being 
in good qualitative agreement with the data. Results derived 

2.s 2.Sr ,4 a ) b ) 

,.0t , J : 
z.sr //. ~" 

"~ I 'Z  ,,° " 1.o 1.o 

"°r { ~  o~ o ~  
O. 5 ~ ~ , ~  

0 .02  0 . 0 4  0 .02  0 . 0 4  
- 4 . 0  0 . 0  - 4 . 0  0 . 0  

' c '  JJ I l 
"1 i "  "~~__~ ~'°t 1~ .o 
0.5 ~ ~ L  0.5 

-4.0 0.0 -4.0 0.0 
~v/o~ x 104 ~ / o ~  = 104 

Figure 8 Profiles of shear stress within the wall jet region 
of the jet studied by Porch et al. (1967) at a) r id=9, b) 
rid---- 12, c) r id= 18 and d) r id= 24; (key as Figure 1 ) 
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Figure 10 Profiles of rms fluctuating radial velocity within 
the wall jet region of the jet studied by Porch et al. (1967) at 
a) r id=9, b) r id= 12, c) r id= 18 and d) r id=24; (key as 
Figure 1 ) 
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region of the jet studied by Yoshida et a l  (1990) at a) 
y/d=05, b) y/d=lO, c) y/d=20 and d) y/d=40; (key as 
Figure 1) 
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Profiles of mean velocity wi th in the wal l  jet Figure 12 Profiles of rms f luctuating velocity parallel to the 
surface wi th in the wall  jet region of the jet studied by 
Yoshida et a l  (1990) at a) y/d=05, b) y/d= 1 0,  c) y/d--20 
and d) y/d=40; (key as Figure 1) 

from the k-e model are in reasonable agreement with maximum 
velocities although, as for earlier comparisons with the data 
Cooper et al. (1993), they significantly overestimate the spread- 
ing rate of the wall jet. Data for parallel-to-wall fluctuating 
velocities are compared with predictions of the two models in 
Figure 12. In contrast with findings for the flow studied by 
Cooper et al., the eddy-viscosity-based approach appears to 
perform better close to the stagnation region, although in the 
near field of the wall jet results derived from the second-moment 
closure are clearly superior. Close to the stagnation line (Figure 
12a and b), however, the data reported by Yoshida et al. (1990) 
should be treated with some caution, because results derived 
from different traverses of the flow do exhibit significant scatter 
(as exemplified by differences between the datapoint at x / d  = 2, 
and the remaining data, in Figure 12b). 

C o n c l u s i o n s  

The standard k-e turbulence model and a version of a second- 
moment closure, modified to include the influence of solid sur- 
faces, have been used to predict the flow resulting from the 
orthogonal impingement of axisymmetric jets and a 2-D channel 
flow on a solid flat surface. Comparison of predictions with 
measurements made in the stagnation and wall jet  regions of 
these flows demonstrate the superiority of the second-moment 
closure, with the transport equation model, in general, accurately 
reproducing observed mean velocities and shear and normal 
stresses. In particular, modifications to the second-moment clo- 
sure to account for the influence of the surface in distorting the 
fluctuating pressure field away from the wall successfully predict 
the dampening of normal-to-waU velocity fluctuations throughout 
the impinging flows. In contrast, results derived from the eddy- 
viscosity-based approach significantly overpredict the latter ve- 
locities, particularly in the stagnation region, and, as a conse- 
quence (in part), mean and fluctuating velocities throughout the 
flow are not predicted accurately. 
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